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ABSTRACT 
In this paper, we applies a new homotopy perturbation method (NHPM),to find the exact solution of Poisson equation 

with Dirichelet and Neumann boundary conditions, to illustrate the ability and reliability of the method two examples 

are provided the results reveal that the method is very effective and simple. 
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     INTRODUCTION
The new homotopy perturbation method (NHPM) was proposed by Biazar an Eslami  [1] for solving two dimensional 

wave equation , The two most important steps in application of new  homotopy perturbation method to construct a 

suitable homotopy equation and choose a suitable initial guess, Considerable research works have been conducted 

recently in applying this method to a class of linear and non-linear equations[2-5], The aim of this paper is to employ 

NHPM to obtain the exact solution of two Poisson equations, one with the Dirichlet boundary conditions and one with 

the Neumann boundary conditions., the difference between (NHPM) and standard (HPM)   [6-10]  is starts from the 

form  of initial approximation of the solution. J. Biazar et all [11], and Selcuk Yıldırım [12] are obtained the solution 

of Poisson equation by HPM .in this letter, the basic idea of (NHPM) is given in section (2), we obtain the exact 

solution of Poisson equation in section (3) the last section (4) is reserved for conclusion. 

 

BASIC IDEAS OF THE METHOD  
Consider the two dimensional Poisson equation  

byaxyxfuu yyxx  0,0),(                                                                         (1) Subject to the 
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To solve Eq. (1) we construct the following homotopy  
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Applying the inverse operator dxdxL

x x

 

0 0

1 )(   to both sides of Eq. (2), we obtain 
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Where  ),0(),0( yuyv   and ),0(),0( yuyv xx  , suppose  )(),0( ygyu x    

Assume the solution of Eq. (3) in the following form: 

            2
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10 vppvvv                                                                                          (4) 

Suppose the initial approximation of the solution ),(0 yxu  , is in the form  
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Where ),(),(),( 210 yayaya are unknown coefficients and ),(),(),( 210 yqyqyq  Are specified functions 

depending on the problem. Substituting (4) and (5) in to Eq. (3) and comparing coefficients of terms with identical 

powers p, we get  
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Considering the hypothesis 0),(1 yxv then the result in: 0),(),( 32  yxvyxv   

Therefore the exact solution would be obtained as the following  ),(),( 0 yxvyxv   

It is important to note that if ),(0 yxu is analytic at 0xx  then its Taylor series is defined as 
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n xxyayxu which can be used in Eq. (6) 

 

APPLICATION OF (NHPM): 
 

Example 1.      Consider the two dimensional Poisson equation in the form:  

       ,,0  yxxyuu yyxx                                                          (7)                                                           

           Subject to the boundary condition:  
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       In order to solve Eq. (7) using (NHPM), we construct the following homotopy: 
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        Appling the inverse operator dxdxL

x x

 

0 0

1 )(  to both sides of Eq. (8) we obtain 
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        Substituting v  from Eq. (4) in to Eq. (9) an equating the term with like power p we can obtain   
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To determined the function  )(yf  , we use the inhomogeneous boundary condition 

 sinhsin
6

1
),( 3 xxyu   , we obtain yyf sinh)(  Therefore, the exact solution of Eq. (10) becomes as :     
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),( 3                                                                                 

Example 2.      Consider the two dimensional Poisson equation  

       ,,0  yxxyuu yyxx                                                        (11)                                                           

           Subject to the boundary condition:  
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To solve Eq. (11) by (NHPM), we construct the following homotopy 
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By integration of Eq. (12), we have: 
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of Eq. (13) in the form (4) substituting (4) into Eq. (13) and equating terms with like powers of p , results in 
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To determined the function  )(yf  , we use the inhomogeneous boundary condition 

 coshcos
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),( 2 xxxuy   , we obtain  yyf cosh)(   , so the exact solution is:  
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It important to note that the Neumann problem that the solution determined 

 up to an Additive constant cannot be determined by (NHPM), the solution should be 

      cyxxyyxu  coshcos
6

1
),( 3

 

 

Conclusions 
In this article, a new homotopy perturbation method (NHPM) has been successfully applied to obtain the exact solution 

of Poisson equation with the Dirichlet and Neumann boundary conditions, in this method the first approximate solution 

has been use to reach the exact solution of the problem, that result reveal the method explicit, effective and easy to 

use.   
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